Strong Gravity, Black Holes & Con-X/XEUS

Chris Reynolds

Department of Astronomy University of Maryland

Constellation-X/XEUS meeting CfA, 23rd February 2005

Strong Gravity, GR...

- λ Where does GR "break"?
 - All expected failure points are in extreme regimes (Planck scales around a "spacetime singularity"; or on length scale of any compactified extra dimensions)
- We should not <u>expect</u> to find deviations from General Relativity around our black holes
 - Require fundamental modifications to the foundations of the theory to obtain any relevant deviation from GR
 - See the "Six Ways to Axiomatize Einstein's Theory" in MTWs Gravitation

... and black hole astrophysics

- λ So, I'll assume GR is correct
- Will focus on observing physics in the strong field background
 - Relativistic dynamics of matter
 & energy close to BHs
 - Astrophysics of BH spin
 - Physics of the most powerful sources in the Universe
 - Along the way... verify or falsify predictions of GR
- We must let ourselves get excited about this (not apologize for it!)

Probing Strong Gravity with gravitational waves

- As advertised, GWs provide clean, robust, and precise tests of GR
- λ Merging of supermassive black holes
 - Compare inspiral & ringdown signals with calculations
 - Direct test of "Area Theorem" of GR (few "Golden Binaries" per year; Hughes & Menou 2004)
- λ Extreme mass ratio inspirals (small BH into SMBH)
 - Can follow 10⁵ orbits of the inspiral of "test mass" into a SMBH (albeit over a restricted mass range)
 - Direct test of Kerr metric and the "No-hair Theorem"
 - Expect ~1000 detectable events per year

Black Hole Spin

- A Astrophysical importance of spin
 - Spin alters structure of inner (energetically dominant) region of accretion disk
 - Spin is potentially a powerful energy source (for disk, jets, other particle acceleration)
 - May well be an important parameter in determining basic nature of many BH-powered astrophysical sources (GBHCs, AGN, GRBs)
- λ Fundamental physics
 - Observing strong frame-dragging effects ⇒ important verification of GR
 - Observing magnetic-extraction of BH spin energy ⇒ important verification of GRMHD

Miller et al. (2004)

GX339-4

Case study: BH spin in MCG-6-30-15

- λ Fe line has extreme redwing... high spin??
- λ Dovciak et al. (2004)argue that line profilecannot be used todetermine BH spin
 - True <u>only</u> if one takes no account of whether emission distribution is physically reasonable
- λ Low spin models need most emission to be deep within the innermost stable circular orbit (CSR & Begelman 1997)

Spin of MCG-6-30-15 (cont)

- Assume Schwarzschild hole \Rightarrow significant line emission from ring at $3r_g$ (i.e., half coordinate radius of ISCO; CSR unpub.)
 - Extremely hard to reconcile with physics of the accretion flow... flow should be fully ionized inside of 4.5-5r_g (due to falling density)
- Assume no line emission from within ISCO ⇒ a>0.93 (Brenneman & CSR, in prep.)
- Bottom line: Current data are definitely probing effects related to BH spin, but conclusions depend on accretion disk physics

"Accretion disk physics" isn't the black box it used to be!

- Rapid development of BH accretion disk theory
 - 1991: Balbus & Hawley realized importance of MRI and MHD turbulence for driving accretion
 - 1995-1996: Local 3D simulations
 - 1998-2000: Global 3D simulations
 - 2002-2003: Global
 GRMHD simulations

Hawley & Krolik (2000)

Within the ISCO

- λ Excellent prospect for detailed theoretical investigation of region within ISCO in near future
- λ Have already uncovered some surprises...
 - Material within ISCO may not plunge ballistically...
 - Magnetic connections can lead to energy/ang-mtm extraction as it plunges
- λ Radiative/ionization properties can soon be examined.

Fit with a Novikov & Thorne disk

Inconsistent with standard disk models of Novikov, Page & Thorne (NPT)...

Additional torquing from the region within the ISCO?

Fit with a Novikov & Thorne disk

Fit with an Agol & Krolik "infinite-efficiency" disk

Big goals for a next generation X-ray observatory

- λ I'll focus on spectral work...
- λ Detailed physics of BH accretion; studies of bright AGN
 - Rapid spectral variability of X-ray continuum (physics and geometry of disk, corona and/or jet)
 - Dynamical timescale iron line variability (geometry, disk turbulence + orbit of matter around BH)
 - Light-crossing timescale iron line variability (geometry + orbit of photons around BH)
 - Calibration of lower-fidelity diagnostics (time-averaged line profiles, continuum shapes etc.) for mass, spin and accretion rate
- λ BHs in the Universe; large samples of objects
 - Demographics of BH mass, spin and accretion rate in GBHC,
 AGN and ULXs from time-averaged iron lines
 - Astrophysics of spin, spin extraction and constraints on BH formation

Specific strategies I : Detailed exploration of disk physics & gravity

- λ Special status of bright AGN
 - Highest photon flux per light-crossing time
 - Best sources to study detailed sub-orbital behaviour
- λ Dynamical timescale variability of iron line and continuum radiation
 - Can trace orbits of inhomogeneities in the flow
 - Direct probe of disk turbulence and motion of matter through spacetime
- Relativistic reverberation of X-ray flares from the inner accretion disk
 - Watch X-ray flash echo through system
 - Direct probe of source geometry an motion of photons through spacetime

Specific strategies I : Detailed exploration of disk physics & gravity

- λ Special status of bright AGN
 - Highest photon flux per light-crossing time
 - Best sources to study detailed sub-orbital behaviour
- **Dynamical timescale variability of iron line and continuum radiation**
 - Can trace orbits of inhomogeneities in the flow
 - Direct probe of disk turbulence and motion of matter through spacetime
- Relativistic reverberation of X-ray flares from the inner accretion disk
 - Watch X-ray flash echo through system
 - Direct probe of source geometry an motion of photons through spacetime

Armitage & CSR (2003)

Courtesy of Jane Turner

Can fit line maxima by three Keplerian orbits with same inclination & central mass!

Specific strategies I : Detailed exploration of disk physics & gravity

- λ Special status of bright AGN
 - Highest photon flux per light-crossing time
 - Best sources to study detailed sub-orbital behaviour
- λ Dynamical timescale variability of iron line and continuum radiation
 - Can trace orbits of inhomogeneities in the flow
 - Direct probe of disk turbulence and motion of matter through spacetime
- **Relativistic reverberation of X-ray flares from the inner accretion disk**
 - Watch X-ray flash echo through system
 - Direct probe of source geometry an motion of photons through spacetime

27

Fig. 4.—Simulated transfer function for (a) an extremal Kerr hole and (b) a Schwarzschild hole. In both cases, the flare has been placed on the symmetry axis at a height of $10GM/c^2$ above the disk plane, and an observer inclination of 30° has been assumed. The data have been rebinned to produce these figures with improved signal-to-noise ratio.

Fig. 7.—Panel a shows the theoretical line response to the two overlapping flares described in the text. Panel b shows the simulated line response as seen by Constellation-X. The individual transfer functions of the two flares can be discerned. The data have been rebinned to produce these figures with improved signal-to-noise ratio.

The need for high-spectral resolution

- Lesson from XMM... high-S/N but moderateresolution spectra have degenerate interpretations
- Need to be able to unambiguously separate out any "foreground" emission and absorption and study the inner disk
- Astro-E2 will demonstrate whether or not we need high spectral-resolution for disk studies

MCG-6-30-15 512ks Chandra HETG; WA fit to broad line Young et al. (2005)

Observing Strategies II: Large samples of BH sources

- Use bright AGN to calibrate lower-fidelity spectral probes
 - E.g., time-averaged broad line profiles and continuum spectra as function of mass, spin, accretion rate
- λ Large samples of AGN, GBHC and ULX/IMBH spectra
 - Demographics of BH mass, spin, accretion rate
 - ONLY way to probe spin in IMBHs and the most massive SMBH (outside of accessible frequency range for all gravitational wave experiments).

Lockman Hole 800 ks XMM-Newton observation

Hasinger

Streblyanskaya et al 2004

Summary and Conclusion

- λ Strong gravity and spectroscopy
 - Light-crossing timescale broad line variability
 - Dynamical timescale broad line variability
 - Relativistic effects in samples of GBHCs,
 ULXs and AGN
- λ Observatory specifications
 - Effective area; A>4m²@4keV, 2m²@6keV
 - Spectral resolution; $E/\Delta E > 1000$

Courtesy of J.Schnittman

Courtesy of J.Schnittman

